On Boosting and the Exponential Loss

نویسنده

  • Abraham J. Wyner
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPLBoost: An Improved Robust Boosting Algorithm Based on Self-paced Learning

It is known that Boosting can be interpreted as a gradient descent technique to minimize an underlying loss function. Specifically, the underlying loss being minimized by the traditional AdaBoost is the exponential loss, which is proved to be very sensitive to random noise/outliers. Therefore, several Boosting algorithms, e.g., LogitBoost and SavageBoost, have been proposed to improve the robus...

متن کامل

Smooth ε-Insensitive Regression by Loss Symmetrization

We describe a framework for solving regression problems by reduction to classification. Our reduction is based on symmetrization of margin-based loss functions commonly used in boosting algorithms, namely, the logistic-loss and the exponential-loss. Our construction yields a smooth version of the ε-insensitive hinge loss that is used in support vector regression. Furthermore, this construction ...

متن کامل

Multi-class Boosting

This paper briefly surveys existing methods for boosting multi-class classication algorithms, as well as compares the performance of one such implementation, Stagewise Additive Modeling using a Multi-class Exponential loss function (SAMME), against that of Softmax Regression, Classification and Regression Trees, and Neural Networks.

متن کامل

Boosting and Maximum Likelihood for Exponential Models

We derive an equivalence between AdaBoost and the dual of a convex optimization problem, showing that the only difference between minimizing the exponential loss used by AdaBoost and maximum likelihood for exponential models is that the latter requires the model to be normalized to form a conditional probability distribution over labels. In addition to establishing a simple and easily understoo...

متن کامل

Generalized Boosted Models: A guide to the gbm package

Boosting takes on various forms with different programs using different loss functions, different base models, and different optimization schemes. The gbm package takes the approach described in [2] and [3]. Some of the terminology differs, mostly due to an effort to cast boosting terms into more standard statistical terminology (e.g. deviance). In addition, the gbm package implements boosting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003